- 初二数学期末考试总结 推荐度:
- 相关推荐
初二数学期末考试总结
总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,因此我们需要回头归纳,写一份总结了。总结一般是怎么写的呢?以下是小编为大家整理的初二数学期末考试总结,希望对大家有所帮助。
初二数学期末考试总结1
一学期已过去,从考试成绩来看,不够理想。在这个学期中,在学校和数学科组的领导下,开展有计划、有步骤的工作。总的来说,我们是在扎实做好常规教学的基础上,如何激发学生学数学用数学的兴趣;如何既要重视学习结果,更要重视学习过程,使学生在学习基本知识和基本技能的过程中学会学习;如何在教学中大胆创新,大面积提高教学质量等来开展工作。是我在教育教学工作中一直研究的课题。
一、深入学习新课程标准,钻研新教材
切实地实施和贯彻新课标,对第一学期的新教材有一个全面的认识和理解,我们全体任课老师经常在课间与科组例会一起讨论,分析,钻研教材,坚持集体备课。通过这个学期的教学,特别是重点部分的教学,我们对这套教材的体系有了更多的了解和更深的体会。这对我们以后使用这套教材会有很大的帮助。我坚持学习新课程标准、钻研新教材,互相交流学习体会;发辉集体的`智慧,进行集体备课;统一教学进度,统一各章节的重点、难点、制定难点的突破教法,探讨交流教学上的问题。
二、做好单元过关测验
每章统一进行单元测验,统一评分标准,并利用集体活动时间进行测后总结分析,写出成绩登记交教导处。各单元测验试卷的命题由同组老师轮流负责。
三、做好培优扶困工作
本届初二学生数学基础参差不齐,学生的基础差是客观现实,从另个角度来说,基础差也说明发展的空间大,只要方法得当,使学生产生学习兴趣,不排斥数学课堂,那么,发展只是程度的问题了。为了使后进生提高数学成绩,我们以个别辅导为主,利用课上和课外去做好培扶工作。
一个学期以来,在教育和教学过程中,仍然存在一些不足之处:
1、后进生转化一直比较缓慢,学生厌学的现象还不同程度的存在;
2、随着学生认知的变化,课堂组织的模式也要不断更新的,有关探索还不是很到位;
3、没有很好地建立学生学习档案;培优扶差工作还有待进一步加强;
4、学生作业质量差,有抄作业现象,更不说课后复习;
5、受不良风气影响较大;
6、上课人在心不在,应付了事。
今后努力的方向
1、加强学习,学习新课标下新的教学思想。
2、学习新课标,挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科目教师先进的教学方法的教学理念。
4、加强转差培优力度。
5、加强教学反思,加大教学投入。
6、抓好教学进度,尽快结束教学任务。
7、在讲授新课时,经常复习旧知识,不让旧知识被忘。
8、平时多关注临界生,对学困生心。
9、多做学困生的思想工作。
我将在以后的实践中继续探索、解决。
初二数学期末考试总结2
1轴对称图形和关于直线对称的两个图形
2轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上。
3用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).。
4等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
理解:已知等腰三角形的一线就可以推知另两线。
一个三角形的两个相等的角所对的边也相等。(等角对等边)
等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
5等边三角形的性质和判定
性质:等边三角形的.三个内角都相等,都等于60度;
判定:三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
1、直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
2、在三角形中,大角对大边,大边对大角。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
6轴对称图形
1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系
4.轴对称与轴对称图形的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
7线段的垂直平分线
定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
性质:线段垂直平分线上的点与这条线段的两个端点的距离相等。
判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上。
8用坐标表示轴对称小结
1、在平面直角坐标系中
①关于x轴对称的点横坐标相等,纵坐标互为相反数;
②关于y轴对称的点横坐标互为相反数,纵坐标相等;
③关于原点对称的点横坐标和纵坐标互为相反数;
④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;
⑤关于与直线X=C或Y=C对称的坐标
2、点(x, y)关于x轴对称的点的坐标为(x, -y)
点(x, y)关于y轴对称的点的坐标为(-x, y)
3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
初二数学期末考试总结3
为全面提高数学教育质量,促进数学课程改革和教学改革,我校进行了一次期中考试。现做试卷分析如下:
一、试卷分析
本套试卷共6页,分值为100分。主要考察了八年级数学第十六章分式和十七章反比例函数的内容。其中包括:分式、分式的运算、分式的方程、反比例函数及其性质以及实际问题与反比例函数。试卷的总体难度适宜,能坚持以纲为纲,以本为本的原则,注重考察基础知识的掌握,覆盖面较广,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章。
第一题为选择题共十个小题,学生出错率较高的题有2、3、6、8、10。第2题涉及到分式的运算,题目难度适中,部分学生由于粗心马虎造成失分;第3题考查反比例函数性质的掌握,题目比较容易,学生对反比例函数的基本性质掌握不熟练导致出错;第6小题考查解分式方程中化分式方程为整式方程,本小题涉及到变号问题,学生做起来感觉吃力;第8和10小题涉及到实际问题,学生应用数学知识解决实际问题的能力较弱,所以出错率较高。
第二题为填空题共七个小题,学生出错率较高的题是12和16。其中12题考查反比例函数的形式及其性质,出错的原因还是基础知识掌握不牢。16题涉及到增根,学生出错是由于对增根的理解不到位。
第三题为解答题共七个小题。18题考查分式的混合运算,19题考查解分式方程,题目难度较低,属于简单题。20题是先化简再求值。实质也是考查分式的混合运算,只是难度较18题略有提高,学生多在化简过程中出现错误。21题主要考查用待定系数法确定反比例函数的关系式,题目简单,学生一般会拿到分数。22题实质也是解分式方程,是对解分式方程能力的拓展和提高,有一定难度,学生出错率也较高。23题是列分式方程解应用题,难度适中,学生出错的原因与8和10相同。24小题考查反比例函数与实际问题,难度不大,一般都能做对。
二、学生分析
我所带班级是八年级一班,学生程度参差不齐,两级分化现象严重。学生学习氛围不太浓厚,部分学生学习态度不端正。程度较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。学生普遍存在的问题就是解决实际问题能力较弱。
三、改进措施
在今后教学中应做如下改进:
1、回归课本,夯实基础
我们要加强基础知识教学和训练,使学生掌握必要的`基础知识、基本技能和基本方法。同时加强学生对基本概念的理解,依据大纲要求,不脱离课本,加强训练,打好初中数学基础。
2、尊重学生个体差异,因材施教
学生程度良莠不齐,我们应该因材施教,特别是后进生,应给与更多帮助和关注,避免学生掉队的情况出现。同时鼓励优等生,使其不断进步。
3、关注生活,加强应用
使学生能用数学眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题。教学中要时常关注社会生活实际编拟一些贴近生活贴近实际有着实际背景的数学应用性试题引导学生学会阅读、审题、获取信息、解决问题。切实提高学生解决实际问题的能力。
4、强化训练,提高计算能力
在夯实基础的前提下,强化训练,不仅可以提高学生的解题计算能力,还能加深学生对基础知识的理解。对例题、习题、练习题和复习题等不能就题论题要以题论法以题为载体变换试题,探究解法研究与其他试题的联系与区别挖掘出其中蕴涵的数学思想方法等将试题的知识价值、教育价值一一解析。
【初二数学期末考试总结】相关文章:
期末考试总结初二07-23
数学期末考试总结10-11
初二数学上册期末总结08-26
初二数学教学工作总结05-26
初二数学学期工作总结6篇02-05
初二数学教师期末工作总结10-30
(精选)期末考试总结07-16
期末考试总结09-01
期末考试总结10-12
期末考试的总结06-12