- 相关推荐
声速的测量实验报告
在日常生活和工作中,报告使用的次数愈发增长,报告具有语言陈述性的特点。你还在对写报告感到一筹莫展吗?以下是小编为大家整理的声速的测量实验报告,欢迎大家借鉴与参考,希望对大家有所帮助。
声速的测量实验报告1
一、 【实验名称】
超声波声速的测量
二、 【实验目的】
1、了解声速的测量原理
2、学习示波器的原理与使用
3、学习用逐差法处理数据
三、 【仪器用具】
1、SV-DH-3型声速测定仪段(资产编号)
2、双踪示波器(资产编号)
3、SVX-3型声速测定信号源(资产编号)
四、 【仪器用具】
1.超声波与压电陶瓷换能器
频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
图1纵向换能器的结构简图
压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。
2.共振干涉法(驻波法)测量声速
假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。
在上述假设条件下,发射波ξ1=Acos(ωt+2πx /λ)。在S2处产生反射,反射波ξ2=A1cos(ωt+2πx /λ),信号相位与ξ1相反,幅度A1<A。ξ1与ξ2在反射平面相交叠加,3合成波束ξξ3=ξ1+ξ2=(A1+A2)cos(ωt-2πx /λ)+A1cos(ωt+2πx /λ) =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)
由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。
图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。
发射换能器与接收换能器之间的距离
图2换能器间距与合成幅度
实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2
之间的距离),你从示
波器显示上会发现,当S2在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2。为了测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓慢的改变S1和S2之间的距离。示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间的距离为λ/2;S2移动过的距离亦为λ/2。超声换能器S2至S1之间的距离的改变可通过转动鼓轮
来实现,而超声波的频率又可由声速测试仪信号源频率显示窗口直接读出。
图3用李萨如图观察相位变化
在连续多次测量相隔半波长的S2的位置变化及声波频率f以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。
3.相位法测量原理
由前述可知入射波ξ1与反射波ξ2叠加,形成波束ξ3即ξ3 =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)即对于波束:ξ1 =Acos(ωt - 2πx /λ)
由此可见,在经过△x距离后,接收到的余弦波与原来位置处的相位差(相移)为θ= 2π △x /λ。如图5所示。因此能通过示波器,用李萨如图法观察测出声波的波长。
4.时差法测量原理
连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t时
间后,到达L距离处的接收换能器。由运动定律可知,声波在介质中传播的速度可由以下公式求出:
速度V=距离L/时间t
图4发射波与接收波
通过测量二换能器发射接收平面之间距离L和时间t ,就可以计算出当前介质下的声波传播速度。五、【实验内容】
1.仪器在使用之前,加电开机预热15min。在接通市电后,自动工作在连续波方式,选择的介质为空气的初始状态。
2.驻波法测量声速。 2.1测量装置的连接:
图5驻波法、相位法连线图
如图5所示,信号源面板上的发射端换能器接口(S1),用于输出一定频率的`功率信号,请接至测试架的发射换能器(S1);信号源面板上的发射端的发射波形Y1,请接至双踪示波器的CH1(Y1),用于观察发射波形;接收换能器(S2)的输出接至示波器的CH2(Y2)
2.2测定压电陶瓷换能器的最佳工作点
只有当换能器S1的发射面和S2的接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到换能器S1、S2的谐振频率点处时,才能较好的进行声能与电能的相互转换(实际上有一个小的通频带),以得到较好的实验效果。按照调节到压电陶瓷换能器谐振点处的信号频率,估计一下示波器的扫描时基t/div,并进行调节,使在示波器上获得稳定波形。
超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节发射强度旋钮,使声速测试仪信号源输出合适的电压(8~10VP-P之间),再调整信号频率(在25~45kHz),选择合适的示波器通道增益(一般0.2V~1V/div之间的位置),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5~37.5kHz之间)电压幅度最大,此频率即是压电换能器S1、S2相匹配频率点,记录频率FN,改变S1和S2间的距离,适当选择位置,重新调整,再次测定工作频率,共测5次,取平均频率f。
2.3测量步骤
将测试方法设置到连续波方式,合适选择相应得测试介质。完成前述2.1、2.2步骤后,观察示波器,找到接收波形的最大值。然后转动距离调节鼓轮,这时波形的幅度会发生变化,记录下幅度为最大时的距离Li-1,距离由数显尺(数显尺原理说明见附录2)或在机械刻度上读出,再向前或者向后(必须是一个方向)移动距离,当接收波经变小后再到最大时,记录下此时的距离Li。即有:波长λi=2│Li -Li-1│,多次测定用逐差法处理数据。
3.相位法/李萨如图法测量波长的步骤
将测试方法设置到连续波方式,合适选择相应的测试介质。完成前述2.1、2.2步骤后,将示波器打到“X-Y”方式,并选择合适的通道增益。转动距离调节鼓轮,观察波形为一定角度的斜线,记录下此时的距离Li-1;距离由数显尺(数显尺原理说明见附录2)或机械刻度尺上读出,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,记录下此时的距离Li。即有:波长λi=│Li -Li-1│
用共振干涉法测量声波的波长的实验装置如图所示。
图中S1和S2为压电超声换能器。信号发生器输出的正弦交流信号加到S1上,由S1完成电声转换,作为声源,发出波前近似为平面的声波;S2作为超声波接收换能器,将接收到的声信号转换成电信号,然后接入示波器观察。S2在接收声波的同时,其表面还反射一部分声波。当S1与S2的表面互相平行时,往返于S1与S2之间的声波发生干涉而形成驻波。
依波动理论,设沿X方向射出的入射波方程为
y1=Acos(ωt-2πλx)
反射波方程为
y2=Acos(ωt+2πλx)
式中,A为声源振幅;ω为角频率;2πxλ为由于波动传播到坐标x处(t时刻)引起的位相变化。
在任意时刻t,空气中某一位置处的合振动方程为
y=y1+y2=(2Acos2πλx)cosωt
上式即为驻波方程。
当cos2πλx=1,即2πλx=kπ时,在x=k·λ2 (k=0,1,2?)处,合成振动振幅最大,称为波腹或声振幅的极大值。
当cos2πλx=0,即2πλx=(2k+1)π2时,在x=(2k+1)·λ4 (k=0,1,2?)处,合成振动振幅最小,称为波节或声振幅的极小值。
改变两换能器之间的距离,当二者之间的距离是半波长的整数倍时,在发射换能器和接收换能器处,声波的幅度(声压)都达到极大值,此时称为“共振”。在相邻极大值之间,两换能器间的距离变化量为λ/2。由波腹(或波节)条件可知,相邻两个波腹(或波节)间的距离为λ2,当S1和S2间的距离L恰好等于半波长(5)
声速的测量实验报告2
一、前言
随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通噪声为主的噪声污染日趋严重,甚至形成了公害,它严重破坏了人们生活的安宁,危害人们的身心健康,影响人们的正常工作与生活。
众所周知,高校的宿舍是大学生在校内学习和生活的环境,良好的环境可促进学生的生长发育,增进健康,使学生有充沛的精力学习和研究。然而来,随着我国经济的高速发展,各地区院校的发展进程也不断加快,与此同时,也导致越来越多的校园噪声,声级也越来越高。
二、实验目的与原理
噪声级为30~40分贝是比较安静的正常环境;超过50分贝就会影响睡眠和休息。由于休息不足,疲劳不能消除,正常生理功能会受到一定的影响;70分贝以上干扰谈话,造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期工作或生活在90分贝以上的噪声环境,会严重影响听力和导致其他疾病的发生。
学生公寓是学生在校园的一个家,是学生时休息的场所,所以需要一个较为安静的环境,但是,同学们常常会抱怨宿舍不够安静,外界太吵闹,墙体隔音效果不好等等。为了降低宿舍内噪声,减少噪声的干扰和危害,保证同学们良好的学习和生活环境,充分了解宿舍的噪声污染情况是非常有必要的,为此,我们小组选择了湖南大学德智公寓进行了噪声测量实验,明确其中的噪声污染源,从而提出适当的措施,以便减少噪声。 通过噪声测量,能让我们良好地掌握噪声计的使用方法和测量环境噪声技术。
三、实验仪器
噪声计(声压计)。
四、实验方案
1、分别测量宿舍大门口和进门大厅,得出外维护结构对室外噪声的隔声强度。简单判断食堂噪声,进门刷卡报警声等的影响程度。
2、选择1—7楼同一竖直方向上的走廊两端和走廊中间段,分别测量其噪声,得出室外噪声在不同距离上的衰减程度。
3、测量宿舍楼东南西北侧声压大小。
4、选取几个特定地点测量声压大小。
5、选择一间寝室,测量其在开门和不开门情况下的声压大小。
6、选择一间寝室,测量其附近有施工和无施工时声压大小。
7、选择一间寝室,测量当产生一些生活噪声(风扇)时声压大小。
8、宿舍内人员主观声感受的。
五、实验步骤和数据分析
1、测量5栋1—7楼同一竖直方向上的`走廊两端和走廊中间段。
5栋宿舍楼内走廊测得数据按楼层从低层一楼到五楼,总体趋势是声压逐渐降低,原因是从一楼到五楼逐渐远离宿舍一楼外噪声声源,受楼内其他杂声影响也较小,所以声压逐渐降低的变化较为稳定。每一层走廊中间测得的声压,较走廊靠近楼外两端测得的小,是由于远离楼栋外侧噪声声源的造成的。六楼、七楼的声压突然升高,六楼是由于在五楼至六楼夹层部分有一个“移动”的电机产生了很大的噪音,七楼是由于楼道中部部分宿舍门开着有人员走动、谈话交流造成声压升高。
2、测量6栋走廊一侧声压。
6栋宿舍楼内走廊测得数据按楼层从低层到高层,总体趋势并不是声压逐渐降低。经过观察发现,在3层走廊一侧,有一台洗衣机在工作,所以第三层的声压会比其他楼层高。在6层,由于学校在安装空调,有施工人员在进行施工,所以才会有该结果。
3、测量宿舍一楼东西南北侧。
宿舍楼东西侧声压较南北侧高,发现是由于西有食堂,食堂工作时间风机炉子等运转的噪声;东近篮球场,篮球场有人在打球造成。
4、测量几个特定地点(单位:dB)
声速的测量实验报告3
实验目的:
测量声音在空气中的传播速度。
实验器材:
温度计、卷尺、秒表。
实验地点:
平遥县状元桥东。
实验人员:
爱物学理小组
实验分工:
张灏、成立敬——测量时间
张海涛——发声
贾兴藩——测温
实验过程:
1测量一段开阔地长;
2测量人在两端准备;
3计时员挥手致意,发声人准备发声;
4发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止)
5多测几次,记录数据。
实验结果:
时间17∶30
温度21℃
发声时间0.26″
发声距离93m
实验结论:
在21℃空气中,声音传播速度为357.69m/s.
实验反思:
有一定误差,卡表不够准确。
【声速的测量实验报告】相关文章:
测量学实验报告01-12
水准测量实验报告06-05
关于密度的测量实验报告05-07
水准测量实验报告12-14
全站仪角度测量实验报告12-03
水准测量实验报告6篇12-15
水准测量实验报告(6篇)12-15
实验报告实验报告 11-16
示波器的实验报告06-11
学校实验报告11-05